A soluble auxin-binding protein from Hyoscyamus muticus is a glutathione S-transferase.

نویسندگان

  • J Bilang
  • H Macdonald
  • P J King
  • A Sturm
چکیده

We have used the photoaffinity label azido-[3H]IAA (5-N3-[7-3H]indole-3-acetic acid), a biologically active analog of indole-3-acetic acid, to identify auxin-binding proteins (ABPs) in the soluble fraction of Hyoscyamus muticus. A 25-kD polypeptide previously described (H. Macdonald, A. M. Jones, P. J. King [1991] J Biol Chem 266: 7393-7399) has now been purified to homogeneity by conventional methods. Binding of azido-[3H]IAA to the purified protein was reduced by active auxins but not by inactive indoles. Partial amino acid sequences of the purified protein showed high homology to glutathione S-transferase (GST) from tobacco (ParB) and from maize (GT32). The conclusion that the 25-kD ABP is a GST is further supported by high GST activity in fractions highly enriched in the 25-kD polypeptide and recognition of the ABP by antibodies against GST from wheat and maize. Furthermore, purification of a protein from a soluble protein extract from H. muticus by affinity chromatography on glutathione-agarose also yielded a 25-kD polypeptide that was indistinguishable in its N-terminal amino acid sequence and biochemical characteristics from the protein purified by conventional methods. Possible functions of GST in auxin action are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and characterization of a glutathione S-transferase that can be photolabeled with 5-azido-indole-3-acetic acid.

Previously, we identified a soluble protein from Hyoscyamus muticus that was photolabeled by 5-azido-indole-3-acetic acid. This protein was determined to be a glutathione S-transferase (GST; J. Bilang, H. Macdonald, P.J. King, and A. Sturm [1993] Plant Physiol 102: 29-34). We have examined the effect of auxin on the activity of this H. muticus GST. Auxins reduced enzyme activity only at high co...

متن کامل

Production and Evaluation of Polyclonal Rabbit Anti-Human p53 Antibody Using Bacterially Expressed Glutathione S-transferase-p53 fusion protein

p53 is a key tumor suppressor gene that is targeted for inactivation during human tumorigenesis. In this study, we produced and characterized polyclonal antihuman p53 antibody. The cDNA encoding the completehuman p53 protein was cloned into pGEX-4T-1 and expressed in Escherichia coli as a fusion protein with Schistosoma japonicum glutathione S-transferase (GST). The rabbits were immunized...

متن کامل

Glutathione S- transferases and their function as a protein superfamily in plants

Glutathione s transferase (GST) is one of the largest protein and multigene families present in all plant species and other living organisms. For these proteins, which are highly ‌inducible to stress and internal and external stimuli, several functions in plants have been identified, including implication in secondary metabolism, growth and development, detoxification of herbicides, coping with...

متن کامل

FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase.

FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, de...

متن کامل

Heterologous expression of Vitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots.

Fast-growing hairy root cultures of Hyoscyamus muticus induced by Agrobacterium rhizogenes offer a potential production system for tropane alkaloids. Oxygen deficiency has been shown to limit growth and biomass accumulation of hairy roots, whereas little experimental data is available on the effect of oxygen on alkaloid production. We have investigated the effect of Vitreoscilla hemoglobin (VHb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 1993